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ABSTRACT 

A central task in design is deciding what artifact will best 

satisfy the client’s needs, whether by creating a new artifact 

or choosing from among existing alternatives. A design 

space identifies and organizes the decisions to be made, 

together with the alternatives for those decisions, thereby 

providing guidance for creation or a framework for compar-

ison. The workshop Studying Professional Software Design 

studied three pairs of professional software designers 

sketching designs for a traffic signal simulator. This paper 

presents a representation of the design space for the traffic 

signal simulation task. It shows how this design space ena-

bles comparison of the designs, and it discusses the benefits 

of explicitly considering the design space during design and 

the risks of failing to do so. 

Categories and Subject Descriptors 

D.2.10 [Software Engineering]: Design (also .b and .c)  

General Terms 

Design 

Keywords 

software design, design space 

DESIGN SPACES 

The design space for a problem is the set of decisions to be 

made about the designed artifact together with the alterna-

tive choices for these decisions. A representation of a de-

sign space is one of the static textual or graphical forms in 

which a particular design space – or a subset of that space – 

may be rendered. 

Intuitively, a design space is a discrete Cartesian space in 

which design decisions are the dimensions, possible alterna-

tives are values on those dimensions, and complete designs 

are points in the space. 

In this view, the design space is very concrete. This is in 

contrast to a common, much vaguer, usage in which “de-

sign space” refers loosely to domain knowledge about the 

problem or perhaps to all decisions in a design activity, be 

they about the problem analysis, designed artifact, or the 

process of producing the design. 

In practice, most interesting design spaces are too rich to 

represent in their entirety, so representations of a design 

space select dimensions corresponding to the properties of 

principal interest. Design dimensions are not independent, 

so choosing some alternative for one decision may preclude  

alternatives for other decisions or make them irrelevant. For 

example, if displaying a value is optional, then decisions 

about the display format are irrelevant if the value is not 

displayed; if multiple values are to be displayed as a graph, 

all should use the same units. As a result, it is convenient to 

represent portions of the design space as trees, despite the 

disadvantage of implying an order in which decisions 

should be made.  

The representation of a design space for a particular task is 

usually a slice of the complete design space that captures 

the important properties required of the artifact. By organiz-

ing the design decisions, a design space helps the designer 

consider the relevant alternatives systematically. It also 

provides a way to compare similar products, by highlight-

ing differences between designs and by allowing systematic 

matching to the needs of the problem at hand. Naturally, a 

good representation for a particular problem should reflect 

the desired properties of the solution. 

Design spaces can inoculate the designer against the temp-

tation to use the first alternative that comes to mind. For 

example, in studying software architectures I repeatedly 

observed the tendency to use a familiar system structure 

instead of analyzing the problem to select an appropriate 

structure. Evidently, software developers were often oblivi-

ous even to the existence of alternatives – that is, they were 

defaulting into familiar structures instead of designing suit-

able ones. 

Design spaces have been used in computer science to or-

ganize knowledge about families of designs or systems 

since at least 1971 [BN71]. They have been used, among 

other things, to describe computer architecture [BN71, 

Si00], user input devices [CMR91], user interface imple-

mentation structures [La90], software architectural styles 

[SC97], distributed sensors [RM04], and typeface design 

[Type]. Exploration of design spaces to find suitable de-

signs, often by searching, is used as a model of designer 

action in design studies [WB06]. 
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Often – and in most practical problems at scale – the design 

space is not completely known in advance. In these cases 

the elaboration of the space proceeds hand-in-hand with the 

design process. Simon [Si96] addresses the difference be-

tween the two cases in Chapter 5, treating the task of selec-

tion from a fixed space as enumeration and optimization 

and the task of searching an unknown or open-ended space 

as search and satisficing. These cases align (very roughly) 

with routine and innovative design. 

REPRESENTING DESIGN SPACES 

Figure 1 shows a small design space for information shar-

ing via the world-wide web. This is only a small slice of the 

entire design space, selected to compare representations of 

the same space. The three dimensions, each with two possi-

ble values for this small example, are 

 Activation: Is communication driven by the sender 

pushing the information to the reader or by the read-

er pulling the communication? 

 Privacy: Is the communication private to a small set 

of known parties, or is it public? 

 Authorship: Is the information authored by a single 

person or by an open-ended group? 

Figure 1 shows examples at each point of the space. For 

example, email is pushed by the sender to the mailbox of 

the reader, it is authored by the sender, and it is private to 

the sender and named recipients.  

 

Figure 1: Design space for WWW information sharing  

Of course, points in this space may be occupied by more 

than one application. For example, instant messaging also 

lies at the <push, private, solo> point. It is also possible for 

some points to be unoccupied, as in Figure 3.  This might 

happen because the combinations of choices don’t make 

sense, or it might indicate opportunity for new products. 

Sketching multi-dimensional spaces obviously does not 

scale well. This small space can be represented in other 

ways. Figure 2 uses a tabular form with rows corresponding 

to points in the space and columns to the dimensions; it has 

the shortcoming that the points on each dimension are rep-

resented only implicitly, in the values in the body of the 

table. The design space can be represented in this format 

only to the extent that it is populated with a full range of 

examples. 

Instance Activation Privacy Authorship 

web page reader pull public solo 

wiki reader pull public shared 

facebook 

status 

reader pull private solo 

facebook wall 

w/comments 

reader pull private shared 

twitter sender push public solo 

Yahoo group 

as email 

sender push public shared 

email sender push private solo 

email d-list sender push private shared 

Figure 2: Instance-oriented representation of design 
space of Figure 1 

This design space can also be represented with emphasis on 

the dimensions and their values. Figure 3 shows one such 

form. Following Brooks [Br10], the tree has two kinds of 

branches: choice and substructure. Choice branches, 

flagged with “##”, are the actual design decisions; usually 

one option should be chosen. Substructure branches (not 

flagged) group independent decisions about the design; 

usually all of these should be explored.  

Activation 

| ## sender push [email] 

| ## reader pull [wiki] [web] 

| ## interactive 

Privacy 

| ## private  [email] 

| ## login controlled 

| ## public  [wiki] [web] 

Authorship (edit or append rights) 

| ## solo  [email] [web] 

| ## shared  [wiki] 

Figure 3: Dimension-oriented representation of design 
space of Figure 1 

This example has only one hierarchical level, but the format 

admits of deeper structure, and indeed the traffic signal 

simulation space is much richer. This representation has the 

advantage of showing alternatives without relying on ex-

amples (two new alternatives are added here), and it han-

dles hierarchical descriptions well. Its disadvantage is that a 

point in the space is represented diffusely, by tagging all 

relevant values. This is illustrated here by placing email, 

wiki, and (static) web page in this representation.  
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Naturally, if other properties are of interest, a different de-

sign space would be appropriate.  For example, this exam-

ple addresses the way information flows between users. If 

the properties of interest were about the representation and 

storage of content, the dimensions of interest might be 

<Persistence, Locus of State, Latency, Content Type>. 

A DESIGN SPACE FOR TRAFFIC SIGNAL 
SIMULATION 

To relate design spaces more closely to practice, I turn to a 

problem of more realistic size, drawn from the NSF-

sponsored workshop Studying Professional Software De-

sign [SPSD10]. In preparation for this workshop, three 2-

person teams were videotaped as they worked for 1-2 hours 

on a design problem. The tapes and transcripts of these ses-

sions were analyzed by a multi-disciplinary group of design 

researchers, who then met to discuss the sessions. The de-

sign task was a simulator of traffic flow in a street network, 

to be used by civil engineering students to appreciate the 

subtlety of traffic light timing. The full text of the task 

statement (the “prompt”) is given in the web site of the 

workshop [SPSD10a] and the introduction to a special issue 

of Design Studies [PvB10] that reports some of the work-

shop results.  

Figure 4 presents a representation of the design space im-

plicit in the transcripts. None of the teams explicitly consid-

ered a design space, so to develop Figure 4 I studied the 

videos and transcripts of the design sessions and identified 

the principal conceptual entities the teams included in their 

designs, along with any alternatives they considered. Trying 

to be faithful to the structure that emerged from the design 

discussions, I identified a set of seven principal dimensions 

to organize the alternatives and annotated these with details 

from the discussions. These are 

 System Concept 

 Road System 

 Traffic Signals 

 Traffic Model 

 Simulator 

 Model of Time 

 User Interface 

The elaboration of each of these dimensions is hierarchical.  

I also reviewed the task prompt, noting choices that were 

implied by the prompt itself. In some cases I added obvious 

alternatives that did not otherwise appear in the transcripts. 

Finally, I examined the demonstration version of a com-

mercial traffic simulation tool [Traf11]. This is a profes-

sional tool, and it has obviously received more design and 

development effort than the workshop exercise,. Neverthe-

less, it is informative to see where it lies in the design 

space. 

Figure 4 show the decisions made by these three teams, 

denoted AD, IN, and MB. The diversity among the three 

designs is striking. The prompt clearly implies certain de-

sign decisions. For example, it says “Students must be able 

to describe the behavior of the traffic lights at each of the 

intersections”, which quite clearly indicates that students 

should set and vary the timing of the signals. These impli-

cations of the prompt are flagged in Figure 4 with bold red 

boxed text. Finally, the decisions exhibited by the com-

mercial tool are indicated in Figure 4 with highlighted 

backgrounds. 

The resulting representation of the design space is incom-

plete in two important ways. First, the alternatives do not 

exhaust the possibilities. Indeed, the commercial traffic 

simulation product [Tra11] presents many such possibili-

ties. Second, this representation captures only the larger-

grained and (apparently) most significant design decisions. 

Omitted, for example, are the characterization of traffic 

entering and leaving at the edges of the map, the handling 

of left turns, and analytics. Nevertheless, the representation 

of Figure 4 provides a uniform framework for comparing 

the designs studied by the workshop. 

VIEWING DESIGNS THROUGH THE LENS OF A 
DESIGN SPACE 

Figure 4 provides a basis for comparing the approaches of 

the three design teams and reflecting on ways that explicit 

consideration of the design space might have helped the 

designers. I will concentrate on architectural decisions, 

which fall chiefly in the “System Concept” and “Simulator” 

dimensions. 

The “System Concept” dimension corresponds to the choice 

of the overall system architecture
1
 and thereby provides the 

structure for the rest of the design. Perhaps because of the 

short time frame imposed by the workshop setting, the 

teams spent little time explicitly discussing overall organi-

zation. Each of the three teams picked a different system 

concept. In each case, the team identified the top-level or-

ganization almost automatically, without considering and 

evaluating alternatives; it appears from the transcripts that 

the overall system concept was chosen implicitly, more as a 

default than a deliberate decision. 

Team AD couched their discussion in terms of objects. 

They began by selecting data structures for intersections, 

roads, and the “cop”, which was the main object to advance 

the state of the system via timer events. A high-level net-

work object allowed users to add roads, from which inter-

sections were inferred. The MVC pattern was mentioned, 

but instead of using the model-view-controller pattern to 

                                                           

1 By “architecture” I mean the high-level concepts that guide the 

system organization, not the selection of data structures or the 

class structure of an object-oriented system. Thus “we’ll use 
MVC” is architectural, but “a road is a queue” is not. 
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organize the design activity, they periodically tried to de-

cide whether an entity (the cop, the clock) was a model or 

controller. 

Team IN saw a data-driven problem in the prompt, so they 

focused on the data items. Although they also mentioned 

MVC, they centered the design on a main map, to which the 

user added intersections connected to roads. This main map 

was the overall controller; intersections were also active 

objects that query roads for traffic and enforce safety rules 

on lights.  

Team MB focused on the visual aspect of the problem, and 

their discussion considered things the students must do: 

build the map, create traffic patterns, set signal timings, run 

the simulation, and so forth. They organized the design 

around a drawing tool to support these activities, and simu-

lation was one of the invokable actions. 

Having mentioned MVC, both AD and IN used the pattern 

informally, and neither mentioned MVC in their summary 

presentation. In classic MVC, the controller is chiefly a 

dynamic mediator between the user’s actions (through the 

UI) and the domain logic in the model. In these designs, 

especially for AD, the controller was assigned the details of 

running the simulation. When the simulation is running, 

however, the user is not offering input to the system. Thus, 

incorporating the simulation logic in the controller may 

make sense for the common informal meaning of “control-

ler”, but it’s not a good match for the controller of the MVC 

pattern. 

The framework of Figure 4 helps us to identify these differ-

ences among the system concepts and simulation mecha-

nisms chosen by the teams.  It also highlights the core task 

set by the first sentence of the prompt, “designing a traffic 

flow simulation program” and the later charge to “focus on 

the important design decisions that form the foundation of 

the implementation”. 

A simulator is a well-known type of software system, with 

a history that goes back many decades. Identifying a system 

as a simulator leads to recognizing – and separating in the 

design – four concerns:  

 the model of the phenomenon to be simulated,  

 the means of setting up a specific case to simulate,  

 the simulation engine itself, and  

 the current state of a simulation (including a way to 

report results).  

Team MB focused on the simulation aspect of the problem, 

though they did not say much about the simulation engine. 

Recognizing the structure of a simulator might have helped 

AD separate “control” (i.e., running a simulation on a spe-

cific case) from the MVC controller (which would mediate 

between the UI and the data being defined by the student). 

Viewing the system as a simulator might have led AD and 

IN to consider alternatives to massively parallel execution 

of objects. It would have almost certainly helped MB sepa-

rate the UI featuring a drawing tool from the model that 

was being created with the drawing tool. 

IMPLICATIONS FOR PRACTICE 

Organizing design knowledge as a design space provides a 

framework for systematically considering design alterna-

tives, for recognizing interactions and tradeoffs among de-

cisions, and for comparing designs. 

Had a design space been available for the traffic signal sim-

ulation task, it would have provided a checklist of questions 

to consider and possible alternatives. Even if the design 

space had not been available at the outset, the discipline of 

creating a partial representation would have sensitize the 

designer to the existence of alternatives and helped to or-

ganize the design discussion.  

Indeed, incorporating the use of design spaces in normal 

practice would lead designers to ask whether a design space 

had already been developed for this or a similar problem, to 

avoid problem analysis from scratch and to exploit domain 

expertise encoded in the design space.  

A suitable representation of a design space also supports 

comparison of designs, in particular the selection of an ap-

propriate solution from a set of existing alternatives that 

have been identified with points in the space. If the re-

quirement is mapped to one or more points in the space, the 

solutions at nearby points in the space should be favored 

candidates. 
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System Concept 

| ##MVC      AD 

| ##Code + User interface   IN 

| ## User Interface    MB 

| ## Simulator 

 

Road System 

| High-level organization 

| | ## Intersections    AD 

| | ## Roads 

| | ## Network    AD IN 

| Intersections 

| | ##Collection of signals   IN 

| | ## Signals and sensors in approaches  MB 

| | ## Have roads (with lights and cars)  AD 

| Roads 

| | Lanes 

| |  ## No lanes 

| |  ## Lanes, with signal per lane  AD IN 

| | Throughput 

| |  Capacity    AD 

| |  Latency    IN MB 

| Connection of roads to intersections 

| | ## Intersections have queues (roads)  AD 

| | ## Lights and sensors in approaches  MB 

| | ## Unspecified or unclear   IN 

| | ## Simulator handles interaction 

 

Traffic Signals 

| Place in hierarchy 

| | ## Belong to roads    AD 

| | ## Belong to intersections   IN 

| | ## Belong to approaches,  

    which connect rds to ints  MB 

| Safety 

| | ## Independent lights with safety checks 

| | | ##Controller checks dynamically  AD IN 

| | | ## UI checks at definition time  MB 

| | ## One set per intersection, selected from safe set 

| Relations among intersections 

| | ## Independent    AD 

| | ## Synchronized    IN MB 

| Setting timing 

| | ## System sets timing   AD IN MB 

| | ## Students set timing   MB 

| Sensors 

| | ## Immediately advance on arrival  IN 

| | ## Wait to synchronize 

Traffic Model 
| ## Master traffic object, discrete cars  MB 

| ## Discrete cars 

| | ## Cars with state, route, destination  MB 

| | ## Random choices at intersections  AD IN MB 

| ## Distributions only 

 

Simulator 

| ## MVC 

| ## Set of objects 

| | ## executing in parallel threads  IN MB 

| | ## traversed by a controller   

    at each clock tick   AD 

| ## Separate model and simulation engine 

 

Model of Time 

| ## Uniform time ticks    AD 

| ## Scheduled event queue 

| ## Parallel threads    IN 

 

User Interface 

| Display 

| | Layout of visual map 

| |  ## student’s own choosing 

| |  ## intersections implied by   

     road crossings   AD MB 

| | Relation of layout distances to road length 

| |  ## layout determines road length  MB 

| |  ## layout determines length,   

    constrained to grid   AD 

| |  ## length independent of layout 

| | Defining the map 

|  |  ##click-drag-drop visual editing  AD IN MB 

| | Setting light timing 

| |  ## double-click on intersection  AD MB 

| | Defining traffic model 

| |  ## set traffic loads only at edges  AD IN MB 

| |  ## allow traffic to enter internally 

| | Viewing results 

| |  ## see individual cars, lights  MB 

| |  ## see view of density on roads  MB 

| |  ## see cars and aggregate statistics  

| |  ## see aggregate statistics only  

| | Saving and restoring 

| |  ## supported    MB 

| |  ## not supported   AD 

 

Figure 4: A composite representation of several designs in the traffic signal simulation design space, showing the 

decisions implied by the prompt , the three teams’ design decisions AD IN MB, and a commercial product
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