
Mary Shaw – The Role of Design Spaces in Software Design 1

The Role of Design Spaces in Software Design

Mary Shaw
Institute for Software Research

School of Computer Science

Carnegie Mellon University

Pittsburgh PA 15213

+1 412-268-2589

mary.shaw@cs.cmu.edu

ABSTRACT

A central task in design is deciding what artifact will best

satisfy the client’s needs, whether by creating a new artifact

or choosing from among existing alternatives. A design

space identifies and organizes the decisions to be made,

together with the alternatives for those decisions, thereby

providing guidance for creation or a framework for compar-

ison. The workshop Studying Professional Software Design

studied three pairs of professional software designers

sketching designs for a traffic signal simulator. This paper

presents a representation of the design space for the traffic

signal simulation task. It shows how this design space ena-

bles comparison of the designs, and it discusses the benefits

of explicitly considering the design space during design and

the risks of failing to do so.

Categories and Subject Descriptors

D.2.10 [Software Engineering]: Design (also .b and .c)

General Terms

Design

Keywords

software design, design space

DESIGN SPACES

The design space for a problem is the set of decisions to be

made about the designed artifact together with the alterna-

tive choices for these decisions. A representation of a de-

sign space is one of the static textual or graphical forms in

which a particular design space – or a subset of that space –

may be rendered.

Intuitively, a design space is a discrete Cartesian space in

which design decisions are the dimensions, possible alterna-

tives are values on those dimensions, and complete designs

are points in the space.

In this view, the design space is very concrete. This is in

contrast to a common, much vaguer, usage in which “de-

sign space” refers loosely to domain knowledge about the

problem or perhaps to all decisions in a design activity, be

they about the problem analysis, designed artifact, or the

process of producing the design.

In practice, most interesting design spaces are too rich to

represent in their entirety, so representations of a design

space select dimensions corresponding to the properties of

principal interest. Design dimensions are not independent,

so choosing some alternative for one decision may preclude

alternatives for other decisions or make them irrelevant. For

example, if displaying a value is optional, then decisions

about the display format are irrelevant if the value is not

displayed; if multiple values are to be displayed as a graph,

all should use the same units. As a result, it is convenient to

represent portions of the design space as trees, despite the

disadvantage of implying an order in which decisions

should be made.

The representation of a design space for a particular task is

usually a slice of the complete design space that captures

the important properties required of the artifact. By organiz-

ing the design decisions, a design space helps the designer

consider the relevant alternatives systematically. It also

provides a way to compare similar products, by highlight-

ing differences between designs and by allowing systematic

matching to the needs of the problem at hand. Naturally, a

good representation for a particular problem should reflect

the desired properties of the solution.

Design spaces can inoculate the designer against the temp-

tation to use the first alternative that comes to mind. For

example, in studying software architectures I repeatedly

observed the tendency to use a familiar system structure

instead of analyzing the problem to select an appropriate

structure. Evidently, software developers were often oblivi-

ous even to the existence of alternatives – that is, they were

defaulting into familiar structures instead of designing suit-

able ones.

Design spaces have been used in computer science to or-

ganize knowledge about families of designs or systems

since at least 1971 [BN71]. They have been used, among

other things, to describe computer architecture [BN71,

Si00], user input devices [CMR91], user interface imple-

mentation structures [La90], software architectural styles

[SC97], distributed sensors [RM04], and typeface design

[Type]. Exploration of design spaces to find suitable de-

signs, often by searching, is used as a model of designer

action in design studies [WB06].

Mary Shaw – The Role of Design Spaces in Software Design 2

Often – and in most practical problems at scale – the design

space is not completely known in advance. In these cases

the elaboration of the space proceeds hand-in-hand with the

design process. Simon [Si96] addresses the difference be-

tween the two cases in Chapter 5, treating the task of selec-

tion from a fixed space as enumeration and optimization

and the task of searching an unknown or open-ended space

as search and satisficing. These cases align (very roughly)

with routine and innovative design.

REPRESENTING DESIGN SPACES

Figure 1 shows a small design space for information shar-

ing via the world-wide web. This is only a small slice of the

entire design space, selected to compare representations of

the same space. The three dimensions, each with two possi-

ble values for this small example, are

 Activation: Is communication driven by the sender

pushing the information to the reader or by the read-

er pulling the communication?

 Privacy: Is the communication private to a small set

of known parties, or is it public?

 Authorship: Is the information authored by a single

person or by an open-ended group?

Figure 1 shows examples at each point of the space. For

example, email is pushed by the sender to the mailbox of

the reader, it is authored by the sender, and it is private to

the sender and named recipients.

Figure 1: Design space for WWW information sharing

Of course, points in this space may be occupied by more

than one application. For example, instant messaging also

lies at the <push, private, solo> point. It is also possible for

some points to be unoccupied, as in Figure 3. This might

happen because the combinations of choices don’t make

sense, or it might indicate opportunity for new products.

Sketching multi-dimensional spaces obviously does not

scale well. This small space can be represented in other

ways. Figure 2 uses a tabular form with rows corresponding

to points in the space and columns to the dimensions; it has

the shortcoming that the points on each dimension are rep-

resented only implicitly, in the values in the body of the

table. The design space can be represented in this format

only to the extent that it is populated with a full range of

examples.

Instance Activation Privacy Authorship

web page reader pull public solo

wiki reader pull public shared

facebook

status

reader pull private solo

facebook wall

w/comments

reader pull private shared

twitter sender push public solo

Yahoo group

as email

sender push public shared

email sender push private solo

email d-list sender push private shared

Figure 2: Instance-oriented representation of design
space of Figure 1

This design space can also be represented with emphasis on

the dimensions and their values. Figure 3 shows one such

form. Following Brooks [Br10], the tree has two kinds of

branches: choice and substructure. Choice branches,

flagged with “##”, are the actual design decisions; usually

one option should be chosen. Substructure branches (not

flagged) group independent decisions about the design;

usually all of these should be explored.

Activation

| ## sender push [email]

| ## reader pull [wiki] [web]

| ## interactive

Privacy

| ## private [email]

| ## login controlled

| ## public [wiki] [web]

Authorship (edit or append rights)

| ## solo [email] [web]

| ## shared [wiki]

Figure 3: Dimension-oriented representation of design
space of Figure 1

This example has only one hierarchical level, but the format

admits of deeper structure, and indeed the traffic signal

simulation space is much richer. This representation has the

advantage of showing alternatives without relying on ex-

amples (two new alternatives are added here), and it han-

dles hierarchical descriptions well. Its disadvantage is that a

point in the space is represented diffusely, by tagging all

relevant values. This is illustrated here by placing email,

wiki, and (static) web page in this representation.

Mary Shaw – The Role of Design Spaces in Software Design 3

Naturally, if other properties are of interest, a different de-

sign space would be appropriate. For example, this exam-

ple addresses the way information flows between users. If

the properties of interest were about the representation and

storage of content, the dimensions of interest might be

<Persistence, Locus of State, Latency, Content Type>.

A DESIGN SPACE FOR TRAFFIC SIGNAL
SIMULATION

To relate design spaces more closely to practice, I turn to a

problem of more realistic size, drawn from the NSF-

sponsored workshop Studying Professional Software De-

sign [SPSD10]. In preparation for this workshop, three 2-

person teams were videotaped as they worked for 1-2 hours

on a design problem. The tapes and transcripts of these ses-

sions were analyzed by a multi-disciplinary group of design

researchers, who then met to discuss the sessions. The de-

sign task was a simulator of traffic flow in a street network,

to be used by civil engineering students to appreciate the

subtlety of traffic light timing. The full text of the task

statement (the “prompt”) is given in the web site of the

workshop [SPSD10a] and the introduction to a special issue

of Design Studies [PvB10] that reports some of the work-

shop results.

Figure 4 presents a representation of the design space im-

plicit in the transcripts. None of the teams explicitly consid-

ered a design space, so to develop Figure 4 I studied the

videos and transcripts of the design sessions and identified

the principal conceptual entities the teams included in their

designs, along with any alternatives they considered. Trying

to be faithful to the structure that emerged from the design

discussions, I identified a set of seven principal dimensions

to organize the alternatives and annotated these with details

from the discussions. These are

 System Concept

 Road System

 Traffic Signals

 Traffic Model

 Simulator

 Model of Time

 User Interface

The elaboration of each of these dimensions is hierarchical.

I also reviewed the task prompt, noting choices that were

implied by the prompt itself. In some cases I added obvious

alternatives that did not otherwise appear in the transcripts.

Finally, I examined the demonstration version of a com-

mercial traffic simulation tool [Traf11]. This is a profes-

sional tool, and it has obviously received more design and

development effort than the workshop exercise,. Neverthe-

less, it is informative to see where it lies in the design

space.

Figure 4 show the decisions made by these three teams,

denoted AD, IN, and MB. The diversity among the three

designs is striking. The prompt clearly implies certain de-

sign decisions. For example, it says “Students must be able

to describe the behavior of the traffic lights at each of the

intersections”, which quite clearly indicates that students

should set and vary the timing of the signals. These impli-

cations of the prompt are flagged in Figure 4 with bold red

boxed text. Finally, the decisions exhibited by the com-

mercial tool are indicated in Figure 4 with highlighted

backgrounds.

The resulting representation of the design space is incom-

plete in two important ways. First, the alternatives do not

exhaust the possibilities. Indeed, the commercial traffic

simulation product [Tra11] presents many such possibili-

ties. Second, this representation captures only the larger-

grained and (apparently) most significant design decisions.

Omitted, for example, are the characterization of traffic

entering and leaving at the edges of the map, the handling

of left turns, and analytics. Nevertheless, the representation

of Figure 4 provides a uniform framework for comparing

the designs studied by the workshop.

VIEWING DESIGNS THROUGH THE LENS OF A
DESIGN SPACE

Figure 4 provides a basis for comparing the approaches of

the three design teams and reflecting on ways that explicit

consideration of the design space might have helped the

designers. I will concentrate on architectural decisions,

which fall chiefly in the “System Concept” and “Simulator”

dimensions.

The “System Concept” dimension corresponds to the choice

of the overall system architecture
1
 and thereby provides the

structure for the rest of the design. Perhaps because of the

short time frame imposed by the workshop setting, the

teams spent little time explicitly discussing overall organi-

zation. Each of the three teams picked a different system

concept. In each case, the team identified the top-level or-

ganization almost automatically, without considering and

evaluating alternatives; it appears from the transcripts that

the overall system concept was chosen implicitly, more as a

default than a deliberate decision.

Team AD couched their discussion in terms of objects.

They began by selecting data structures for intersections,

roads, and the “cop”, which was the main object to advance

the state of the system via timer events. A high-level net-

work object allowed users to add roads, from which inter-

sections were inferred. The MVC pattern was mentioned,

but instead of using the model-view-controller pattern to

1 By “architecture” I mean the high-level concepts that guide the

system organization, not the selection of data structures or the

class structure of an object-oriented system. Thus “we’ll use
MVC” is architectural, but “a road is a queue” is not.

Mary Shaw – The Role of Design Spaces in Software Design 4

organize the design activity, they periodically tried to de-

cide whether an entity (the cop, the clock) was a model or

controller.

Team IN saw a data-driven problem in the prompt, so they

focused on the data items. Although they also mentioned

MVC, they centered the design on a main map, to which the

user added intersections connected to roads. This main map

was the overall controller; intersections were also active

objects that query roads for traffic and enforce safety rules

on lights.

Team MB focused on the visual aspect of the problem, and

their discussion considered things the students must do:

build the map, create traffic patterns, set signal timings, run

the simulation, and so forth. They organized the design

around a drawing tool to support these activities, and simu-

lation was one of the invokable actions.

Having mentioned MVC, both AD and IN used the pattern

informally, and neither mentioned MVC in their summary

presentation. In classic MVC, the controller is chiefly a

dynamic mediator between the user’s actions (through the

UI) and the domain logic in the model. In these designs,

especially for AD, the controller was assigned the details of

running the simulation. When the simulation is running,

however, the user is not offering input to the system. Thus,

incorporating the simulation logic in the controller may

make sense for the common informal meaning of “control-

ler”, but it’s not a good match for the controller of the MVC

pattern.

The framework of Figure 4 helps us to identify these differ-

ences among the system concepts and simulation mecha-

nisms chosen by the teams. It also highlights the core task

set by the first sentence of the prompt, “designing a traffic

flow simulation program” and the later charge to “focus on

the important design decisions that form the foundation of

the implementation”.

A simulator is a well-known type of software system, with

a history that goes back many decades. Identifying a system

as a simulator leads to recognizing – and separating in the

design – four concerns:

 the model of the phenomenon to be simulated,

 the means of setting up a specific case to simulate,

 the simulation engine itself, and

 the current state of a simulation (including a way to

report results).

Team MB focused on the simulation aspect of the problem,

though they did not say much about the simulation engine.

Recognizing the structure of a simulator might have helped

AD separate “control” (i.e., running a simulation on a spe-

cific case) from the MVC controller (which would mediate

between the UI and the data being defined by the student).

Viewing the system as a simulator might have led AD and

IN to consider alternatives to massively parallel execution

of objects. It would have almost certainly helped MB sepa-

rate the UI featuring a drawing tool from the model that

was being created with the drawing tool.

IMPLICATIONS FOR PRACTICE

Organizing design knowledge as a design space provides a

framework for systematically considering design alterna-

tives, for recognizing interactions and tradeoffs among de-

cisions, and for comparing designs.

Had a design space been available for the traffic signal sim-

ulation task, it would have provided a checklist of questions

to consider and possible alternatives. Even if the design

space had not been available at the outset, the discipline of

creating a partial representation would have sensitize the

designer to the existence of alternatives and helped to or-

ganize the design discussion.

Indeed, incorporating the use of design spaces in normal

practice would lead designers to ask whether a design space

had already been developed for this or a similar problem, to

avoid problem analysis from scratch and to exploit domain

expertise encoded in the design space.

A suitable representation of a design space also supports

comparison of designs, in particular the selection of an ap-

propriate solution from a set of existing alternatives that

have been identified with points in the space. If the re-

quirement is mapped to one or more points in the space, the

solutions at nearby points in the space should be favored

candidates.

ACKNOWLEDGEMENTS

The workshop on Studying Professional Software Design

was partially supported by NSF grant CCF-0845840. The

workshop would not have been possible without the will-

ingness of the professional designers to work on the design

task and to allow that work to be reviewed.

Mary Shaw – The Role of Design Spaces in Software Design 5

System Concept

| ##MVC AD

| ##Code + User interface IN

| ## User Interface MB

| ## Simulator

Road System

| High-level organization

| | ## Intersections AD

| | ## Roads

| | ## Network AD IN

| Intersections

| | ##Collection of signals IN

| | ## Signals and sensors in approaches MB

| | ## Have roads (with lights and cars) AD

| Roads

| | Lanes

| | ## No lanes

| | ## Lanes, with signal per lane AD IN

| | Throughput

| | Capacity AD

| | Latency IN MB

| Connection of roads to intersections

| | ## Intersections have queues (roads) AD

| | ## Lights and sensors in approaches MB

| | ## Unspecified or unclear IN

| | ## Simulator handles interaction

Traffic Signals

| Place in hierarchy

| | ## Belong to roads AD

| | ## Belong to intersections IN

| | ## Belong to approaches,

 which connect rds to ints MB

| Safety

| | ## Independent lights with safety checks

| | | ##Controller checks dynamically AD IN

| | | ## UI checks at definition time MB

| | ## One set per intersection, selected from safe set

| Relations among intersections

| | ## Independent AD

| | ## Synchronized IN MB

| Setting timing

| | ## System sets timing AD IN MB

| | ## Students set timing MB

| Sensors

| | ## Immediately advance on arrival IN

| | ## Wait to synchronize

Traffic Model
| ## Master traffic object, discrete cars MB

| ## Discrete cars

| | ## Cars with state, route, destination MB

| | ## Random choices at intersections AD IN MB

| ## Distributions only

Simulator

| ## MVC

| ## Set of objects

| | ## executing in parallel threads IN MB

| | ## traversed by a controller

 at each clock tick AD

| ## Separate model and simulation engine

Model of Time

| ## Uniform time ticks AD

| ## Scheduled event queue

| ## Parallel threads IN

User Interface

| Display

| | Layout of visual map

| | ## student’s own choosing

| | ## intersections implied by

 road crossings AD MB

| | Relation of layout distances to road length

| | ## layout determines road length MB

| | ## layout determines length,

 constrained to grid AD

| | ## length independent of layout

| | Defining the map

| | ##click-drag-drop visual editing AD IN MB

| | Setting light timing

| | ## double-click on intersection AD MB

| | Defining traffic model

| | ## set traffic loads only at edges AD IN MB

| | ## allow traffic to enter internally

| | Viewing results

| | ## see individual cars, lights MB

| | ## see view of density on roads MB

| | ## see cars and aggregate statistics

| | ## see aggregate statistics only

| | Saving and restoring

| | ## supported MB

| | ## not supported AD

Figure 4: A composite representation of several designs in the traffic signal simulation design space, showing the

decisions implied by the prompt , the three teams’ design decisions AD IN MB, and a commercial product

Mary Shaw – The Role of Design Spaces in Software Design 6

REFERENCES

[BN71] C. Gordon Bell and Allen Newell. Computer Struc-

tures: Readings and Examples. McGraw-Hill 1971.

[Br10] Frederick P. Brooks, Jr. Design of Design. Addison-

Wesley 2010.

[CMR91] Stuart K. Card, Jock D. Mackinlay, and George

G. Robertson. A morphological analysis of the design space

of input devices. ACM Transactions on Information Sys-

tems. 9 (2) April 1991, 99-122.

[La90] Thomas G. Lane. User Interface Software Struc-

tures. PhD thesis, Carnegie Mellon University, May 1990.

[PvB10] Marian Petre, André van der Hoek, and Alex

Baker. Editorial (introduction). Special Issue Studying Pro-

fessional Software Design, Design Studies, vol 31, no 6,

Nov 2010, 533-544.

[RM04] Kay Römer and Friedemann Mattern. The design

space of wireless sensor networks. IEEE Wireless Comm.

Dec 2004.

[SC97] Mary Shaw and Paul Clements. A field guide to

Boxology: Preliminary classification of architectural styles

for software systems, Proceedings of the 21st International

Computer Software and Applications Conference, 1997, pp.

6-13.

[Si96] Herbert A. Simon. Sciences of the Artificial. MIT

Press, 3
rd

 edition 1996.

[Si00] Dezsö Sima, The Design Space of Register Renam-

ing Techniques, IEEE Micro, vol. 20, no. 5, pp. 70-83,

Sep./Oct. 2000, doi:10.1109/40.877952

[SPSD10] International workshop “Studying Professional

Software Design”, February 8-10 2010.

http://www.ics.uci.edu/design-workshop

[SPSD10a] Design Prompt: Traffic Signal Simulator. Prob-

lem statement for International workshop on Studying Pro-

fessional Software Design. http://www.ics.uci.edu/design-

workshop/files/UCI_Design_Workshop_Prompt.pdf

[Traf11] Trafficware. SynchroGreen Adaptive Traffic Con-

trol System. http://www.trafficware.com/

[WB06] Robert F. Woodbury and Andrew L. Burrow.

Whither design space? Artificial Intelligence for Engineer-

ing Design, Analysis, and Manufacturing, vol 20 no 2,

2006, pp. 63-82.

[Type] Design space for typeface design

http://www.typedu.org/dynamic/lessons/article/designspace

ABOUT THE AUTHOR

MARY SHAW is the Alan J. Perlis University Professor of

Computer Science at Carnegie Mellon University. Her re-

search interests include software design, software architec-

ture, end user software engineering, and cybersociotech-

nical systems. She has received the ACM SIGSOFT Out-

standing Research AWARD, the IEEE Computer Society

TCSE's Distinguished Educator Award, CSEE&T's Nancy

Mead Award for Excellence in Software Engineering Edu-

cation, the Stevens Award, and the Warnier Prize. She is a

fellow of the ACM, the IEEE, and the American Associa-

tion for the Advancement of Science; she is also a member

of IFIP WG 2.10 on Software Architecture. Contact her at

mary.shaw@cs.cmu.edu

